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Problem Set for Lecture 1

The Basic MIU model

Problem 1: Intertemporal budget constraint of the representative house-
hold in the decentralized MIU model
Suppose the aggregate production

Yt = F (Kt−1, Nt)

is of CRTS and assume that households receive their factor income from competitive
factor markets which pay labour and capital according to their marginal products.
Let wt denote the wage rate paid in period t and assume perfect substitutability
between real bonds and physical capital such that 1 + rt−1 = 1 + fk(k

′
t−1)− δ, with

k′t−1 = kt−1
1+n

.
a) Show that the flow budget constraint of the household derived in the Lecture
Notes, ie

f(
kt−1

1 + n
) + τ t + (1− δ) kt−1

1 + n
+ (1 + rt−1)

bt−1

1 + n
+

1

1 + πt

mt−1

1 + n
= ct + kt + bt +mt

can be rewritten as

wt + τ t + (1 + rt−1)
kt−1 + bt−1

1 + n
+

1

1 + πt

mt−1

1 + n
= ct + kt + bt +mt

b) Let at ≡ kt + bt +mt. Show that the transversality condition

lim
t→∞

βtλtxt = 0 x = k, b,m

implies that the flow budget constraint can be transformed into the intertemporal
budget constraint

1 + r−1

1 + n
a−1 +

∞∑
t=0

Qt(wt + τ t) =
∞∑
t=0

Qt(ct +
it−1

1 + πt

mt−1

1 + n t
),

using

Q0 = 1 and Qt =
t−1∏
j=0

1 + n

1 + rj
∀t > 1
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Problem 2: Dynamics in ct and kt under additively separable preferences
in ct and mt

Assuming additively separable preferences in ct and mt, the Lecture Notes derive
that ∀t > 0 the dynamics in ct and kt are given by the (sub-)system

β(1 + fk(kt)− δ︸ ︷︷ ︸
1+rt

)νc(ct+1) = νc(ct)

ct + kt = f(kt−1) + (1− δ)kt−1

To obtain a two-dimensional system of first-order difference equations, the Lecture
Notes use the transformation

ct ≡ cTt−1,

and replace the initial system in ct and kt by the transformed system in cTt and kt
s.t. ∀t > −1 :

β(1 + fk(kt+1)− δ︸ ︷︷ ︸
1+rt+1

)νc(c
T
t+1) = νc(c

T
t )

cTt + kt+1 = f(kt) + (1− δ)kt

Explain why this transformation does not affect the sequence of events, implying
that the transformed and the initial system are equivalent.

Problem 3: First-order linear difference equations
Consider the first-order linear difference equation

xt+1 = (1 + r) · xt + a with: r 6= 0, 1 + r > 0 (1)

Think of (1) as a law of motion governing a bank account which offers a constant
real interest rate r 6= 0 on the (beginning of period) balances xt and which is subject
to a constant deposit (a > 0) or withdrawal (a < 0) per period.
a) General solution
Verify that

xt = c · (1 + r)t − a

r
(2)

is a general solution of (1), with unknown coeffi cient c.
b) Backwardlooking stability
Let r < 0 and assume that the initial balance in t = 0 is given (predetermined) by
x0 > 0. Derive the definite solution of (2).
c) Forwardlooking stability
Let r > 0 and assume that in t = 0 the starting balance can be flexibly adjusted in
order to satisfy the terminal condition lim

T→∞
xT = −a

r
. Derive the definite solution

of (2).
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Problem 4: Dynamics in c and k under additively separable preferences
in c and m : solution via a phase diagram
Consider the basic MIU model and assume that preferences are additively separable
in ct and mt. Consider the dynamic sub-system in cTt and kt s.t. ∀t > −1

β(1 + fk(kt+1)− δ︸ ︷︷ ︸
1+rt+1

)νc(c
T
t+1) = νc(c

T
t )

cTt + kt+1 = f(kt) + (1− δ)kt,

as derived in the Lecture Notes.
Assume that preferences with respect to consumption are given by the function

ν(ct) =
1

1− Φ
· c1−Φ
t with: Φ > 0,Φ 6= 1

a) Find an interpretation for the parameter Φ.
b) Draw a phase diagram in order to characterize the dynamics in c and k in the
sub-system of equations.
(→ Notice that in this particular case you do not need to linearize the consumption
Euler equation.)
c) Interpret the dynamics based on the phase diagram.

Problem 5: 2x2 systems of first-order (linearized) difference equations
Consider the linearized 2x2-system

ht+1 =

[
h1,t+1

h2,t+1

]
= A ·

[
h1,t

h2,t

]
= A · ht (3)

with general solution (assuming |λi| 6= 1, i = 1, 2)

ht = (
h1,t

h2,t
) = (

µ1

q1 · µ1
) · λt1 + (

µ2

q2 · µ2
) · λt2, (4)

as derived in the Lecture Notes.
a) Backwardlooking stability
Let

A =

[
1
2

1
9

1
4

1
2

]
.

i) Illustrate the dynamics of (3) with a phase diagram.
ii) Calculate the eigenvalues and eigenvectors of A.
iii) Assume that the initial values of h1 and h2 in t = 0 are given (predetermined)
by h1,0 = h2,0 = 1. Derive the definite solution of (4).
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b) Forwardlooking stability (one-dimensional)
Let

A =

[
1 1

2
1
2

1

]
.

i) Illustrate the dynamics of (3) with a phase diagram.
ii) Calculate the eigenvalues and eigenvectors of A.
iii) Impose the terminal condition lim

T→∞
h1,T = 0 and assume that the initial value

of h2 in t = 0 is given (predetermined) by h2,0 = 1. Derive the definite solution of
(4).

c) Forwardlooking stability (two-dimensional)
Let

A =

[
5 1
9 5

]
.

i) Illustrate the dynamics of (3) with a phase diagram.
ii) Calculate the eigenvalues and eigenvectors of A.
iii) Impose the pair of terminal conditions lim

T→∞
h1,T = 0 and lim

T→∞
h2,T = 0. Derive

the definite solution of (4).

Problem 6: Saddlepath-stability of the c− k−dynamics in the basic MIU
model with additively separable preferences in ct and mt

The Lecture Notes derive the dynamic sub-system in cTt and kt s.t. ∀t > −1 :

β(1 + fk(kt+1)− δ︸ ︷︷ ︸
1+rt+1

)νc(c
T
t+1) = νc(c

T
t )

cTt + kt+1 = f(kt) + (1− δ)kt

Consider a first-order Taylor expansion of the system around the unique steady state
values k∗ and c∗ such that[

cTt+1 − c∗
kt+1 − k∗

]
= A ·

[
cTt − c∗
kt − k∗

]
and show that the linearized dynamics are locally saddlepath-stable, satisfying the
pattern |λ1| < 1 and |λ2| > 1.
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